| 注册
首页|期刊导航|现代制造工程|基于粒子群算法优化支持向量机的数控机床状态预测

基于粒子群算法优化支持向量机的数控机床状态预测

许志军

现代制造工程Issue(7):46-49,4.
现代制造工程Issue(7):46-49,4.

基于粒子群算法优化支持向量机的数控机床状态预测

State prediction for CNC machine based on PSO-SVM

许志军1

作者信息

  • 1. 四川机电职业技术学院,攀枝花,617000
  • 折叠

摘要

Abstract

Prediction of CNC machine is significant to find out the health state of CNC machine. To forecast CNC machine exactly,Support Vector Machine optimized by Particle Swarm Optimization algorithm(PSO-SVM) is proposed to forecast the health state of CNC machine. Particle swarm optimization algorithm is used to determine the training parameters of support vector machine in this model, which can gain optimized SVM forecasting model. The experimental results indicate that the proposed PSO-SVM model not only requires small training data,but also can achieve great accuracy.

关键词

支持向量机/参数优化/数控机床/预测模型

Key words

Support Vector Machine ( SVM )/ parameter optimization/ CNC machine/ forecasting model

分类

管理科学

引用本文复制引用

许志军..基于粒子群算法优化支持向量机的数控机床状态预测[J].现代制造工程,2011,(7):46-49,4.

现代制造工程

OA北大核心CSCDCSTPCD

1671-3133

访问量0
|
下载量0
段落导航相关论文