| 注册
首页|期刊导航|化工学报|改进的双模型结构RBF神经网络及其应用

改进的双模型结构RBF神经网络及其应用

李全善 张义山 曹柳林 林晓琳 崔佳

化工学报2011,Vol.62Issue(8):2345-2349,5.
化工学报2011,Vol.62Issue(8):2345-2349,5.DOI:10.3969/j.issn.0438-1157.2011.08.045

改进的双模型结构RBF神经网络及其应用

Improved RBF neural network with double model structure and its application

李全善 1张义山 2曹柳林 3林晓琳 1崔佳2

作者信息

  • 1. 北京化工大学信息科学与技术学院,北京,100029
  • 2. 北京世纪隆博科技有限责任公司,北京,100020
  • 3. 中国石油辽阳石化分公司,辽宁,辽阳,111003
  • 折叠

摘要

Abstract

A dual model RBF (radial basis function) neural network was proposed in this paper. One is used for self-learning, which learns one time a day. The other is used for on-line correcting, which is the running model currently. Both the self-learning model and the on-line correcting model are corrected six times every day and should track the current conditions of the system quickly. At the same time, the accuracy of the two models should be compared. If the accuracy of the on-line correcting model is less than the one of the self-learning model, the latter becomes the new currently running model instead of the old one. Otherwise, the currently model is maintained. To solve the problem of neural network large prediction errors, a network algorithm analysis is given and the influence factors of the network prediction accuracy are found. At last, an improved algorithm of RBF neural network modeling is proposed, which combines K-means clustering method with the recursive descent algorithm. Simulation and practical application proved the effectiveness of the improved method.

关键词

RBF神经网络/软仪表/双模型结构

Key words

RBF neural networks software instrument/ double model

分类

信息技术与安全科学

引用本文复制引用

李全善,张义山,曹柳林,林晓琳,崔佳..改进的双模型结构RBF神经网络及其应用[J].化工学报,2011,62(8):2345-2349,5.

基金项目

国家自然科学基金项目(60974031,60704011) (60974031,60704011)

北京市中小企业创新基金项目(Z09010400260912). (Z09010400260912)

化工学报

OA北大核心CSCDCSTPCD

0438-1157

访问量0
|
下载量0
段落导航相关论文