| 注册
首页|期刊导航|电力系统保护与控制|基于分形特征的最小二乘支持向量机局部放电模式识别

基于分形特征的最小二乘支持向量机局部放电模式识别

任先文 薛雷 宋阳 郭丹丹 沈重

电力系统保护与控制2011,Vol.39Issue(14):143-147,5.
电力系统保护与控制2011,Vol.39Issue(14):143-147,5.

基于分形特征的最小二乘支持向量机局部放电模式识别

The pattern recognition of partial discharge based on fractal characteristics using LS-SVM

任先文 1薛雷 1宋阳 1郭丹丹 1沈重1

作者信息

  • 1. 东北电力大学,吉林,吉林,132012
  • 折叠

摘要

Abstract

In order to improve the correct rate of partial discharge (PD) pattern recognition, a method based on the least squares support vector machine ( LS-SVM ) is put forward to recognize the discharge models.Using the wavelet analysis technology and the fractal theory, the fractal dimension of signals in each frequency-band can be calculated, and the reciprocal of fractal dimensions of each frequency-band are input to multi-classified LS-SVMs for training to implement PD samples classification.The results show that by adopting fractal characteristics, the PD signal information is concentrated and the time-consuming problem in parameter determination is solved.Moreover, the method enables to detect a high recognition rate under condition of small samples, and has good value in PD pattern recognition.

关键词

局部放电/最小二乘支持向量机/小波包分析/分形维数/模式识别

Key words

partial discharge/ least squares-support vector machine/ wavelet packet analysis/ fractal dimension/ pattern recognition

分类

信息技术与安全科学

引用本文复制引用

任先文,薛雷,宋阳,郭丹丹,沈重..基于分形特征的最小二乘支持向量机局部放电模式识别[J].电力系统保护与控制,2011,39(14):143-147,5.

电力系统保护与控制

OA北大核心CSCDCSTPCD

1674-3415

访问量0
|
下载量0
段落导航相关论文