| 注册
首页|期刊导航|水科学进展|正交曲线坐标系二维浅水方程ELADI有限差分方法

正交曲线坐标系二维浅水方程ELADI有限差分方法

周刚 郑丙辉 胡德超 雷坤 乔飞

水科学进展2011,Vol.22Issue(4):523-531,9.
水科学进展2011,Vol.22Issue(4):523-531,9.DOI:32.1309.P.20110709.1619.011

正交曲线坐标系二维浅水方程ELADI有限差分方法

ELADI finite difference method for 2D shallow water equation in the orthogonal curvilinear coordinate system

周刚 1郑丙辉 1胡德超 2雷坤 1乔飞1

作者信息

  • 1. 中国环境科学研究院环境基准与风险评估国家重点实验室,北京100012
  • 2. 长江科学院河流研究所,湖北武汉430010
  • 折叠

摘要

Abstract

Accuracy and efficiency are two key factors for the numerical simulation of N-S equations in computational fluid dynamics. In this paper, the Eulerian-Lagrangian alternating direction implicit (ELADI) finite difference method for 2D shallow water equations in orthogonal curvilinear coordinate system is extensively discussed together with the basic principle and discretization methods. The ELADI method combines the alternating direction implicit method (ADI) with the Eulerian-Lagrangian Method (ELM). The numerical diffusivity of the ELM method is analyzed. The ELADI method is compared with traditional methods using the laboratory experiments conducted in a curved flume, as well as field measurements from the Haoxue river bend in the upper Jingjiang Reach of the Yangtze River. The result shows that the ELADI method improves computational efficiency greatly with satisfactory accuracy. For the test case, ELADI even allows the Courant number reaching 40 and reducing the computational cost by 90% compared to the traditional method.

关键词

二维/正交曲线/浅水方程/欧拉-拉格朗日方法/交替方向隐式方法

Key words

2D/ orthogonal curvilinear/ shallow water equations/ Eulerian-Lagrangian method/ alternating direction implicit method

分类

建筑与水利

引用本文复制引用

周刚,郑丙辉,胡德超,雷坤,乔飞..正交曲线坐标系二维浅水方程ELADI有限差分方法[J].水科学进展,2011,22(4):523-531,9.

基金项目

水体污染控制与治理科技重大专项(2008ZX07526-005 ()

2009ZX07528-003) ()

水科学进展

OA北大核心CSCDCSTPCD

1001-6791

访问量3
|
下载量0
段落导航相关论文