| 注册
首页|期刊导航|林业科学|基于DOMAIN和NeuralEnsembles模型预测中国毛竹潜在分布

基于DOMAIN和NeuralEnsembles模型预测中国毛竹潜在分布

张雷 刘世荣 孙鹏森 王同立

林业科学2011,Vol.47Issue(7):20-26,7.
林业科学2011,Vol.47Issue(7):20-26,7.

基于DOMAIN和NeuralEnsembles模型预测中国毛竹潜在分布

Predicting the Potential Distribution of Phyllostachys edulis with DOMAIN and NeuralEnsembles Models

张雷 1刘世荣 2孙鹏森 1王同立3

作者信息

  • 1. 中国林业科学研究院森林生态环境与保护研究所国家林业局森林生态环境重点实验室 北京100091
  • 2. 中国林业科学研究院 北京100091
  • 3. Department of Forest Sciences, University of British Columbia Vancouver V6T 1 Z4
  • 折叠

摘要

Abstract

In this paper a profile technique- DOMAIN was used to map potential habitat suitable for moso bamboo ( Phyllostachys edulis). And to select the areas with low suitable habitat as pseudo-absences. Then a group discrimination technique-NeuralEnsembles was employed to predict the potential distribution of moso bamboo ( hereafter termed hybrid model) based on pseudo-absences and true presences data. Sensitivity, Kappa and the area under the curve ( AUC) values of receiver operator characteristic ( ROC ) curve were employed to assess model predictive accuracy. Meanwhile, we investigated the sample size effects of pseudo-absences generated by DOMAIN on model performance. We also compared model performance of hybrid model with single model-NeurnalEnsembles. Results indicated that the hybrid model could achieve a higher accuracy in simulating current distribution of moso bamboo in comparison to single model. Sensitivity and AUC were relatively independent from pseudo-absence sample size, but Kappa declined with the increasing pseudo-absence sample size. Climate change is likely to have dramatic effects on the potential distribution of moso bamboo, with the northward migration ranging from 33 to 266 km, and the area expansion by 7. 4% to 13. 9% .

关键词

DOMAIN/NeuralEnsembles/模型耦合/潜在分布模拟/气候变化/毛竹

Key words

DOMAIN/ NeuralEnsembles/ hybrid model/ potential distribution modeling/ climate change/ Phyllostachys edulis

分类

农业科技

引用本文复制引用

张雷,刘世荣,孙鹏森,王同立..基于DOMAIN和NeuralEnsembles模型预测中国毛竹潜在分布[J].林业科学,2011,47(7):20-26,7.

基金项目

国家自然科学基金重大项目课题(30590383),林业公益性行业重大科研专项(200804001.201104006),中国林业科学研究院院所基金海外人才专项(CAFYBB2008007),“十一五”科技支撑项目(2006BAD03A04),国家科技部国际科技合作项目(2008 DFA32070)资助. (30590383)

林业科学

OA北大核心CSCDCSTPCD

1001-7488

访问量0
|
下载量0
段落导航相关论文