| 注册
首页|期刊导航|重庆大学学报|混沌粒子群优化模糊聚类的旋转机械故障诊断

混沌粒子群优化模糊聚类的旋转机械故障诊断

胡方霞 谢志江 岳茂雄

重庆大学学报2011,Vol.34Issue(6):26-30,5.
重庆大学学报2011,Vol.34Issue(6):26-30,5.

混沌粒子群优化模糊聚类的旋转机械故障诊断

Fault diagnosis of rotating machinery based on fuzzy clustering optimized by chaos embedded particle swarm optimization

胡方霞 1谢志江 2岳茂雄1

作者信息

  • 1. 重庆大学机械传动国家重点实验室,重庆400044
  • 2. 重庆工商职业学院计算机与电子工程系,重庆400052
  • 折叠

摘要

Abstract

A method of weighted fuzzy clustering optimized by chaos embedded particle swarm algorithm (CPSO) is put forward and applied in vibration fault diagnosis of rotating machinery. In the method, CPSO is used to displace the traditional stochastic-gradient algorithm to optimize parameters of weighted fuzzy C-means (WFCM). The best clustering num and clustering centers are automatically attained according to clustering validity function. The experimental results show that the method effectively increases the convergence velocity and precision of WFCM and so does the correctness rate of fault diagnosis for rotating machinery.

关键词

旋转机械;故障诊断;混沌;粒子群优化;模糊C-均值

Key words

rotating machinery/ fault diagnosis/ chaos/ particle swarm optimization/ fuzzy C-means

分类

能源科技

引用本文复制引用

胡方霞,谢志江,岳茂雄..混沌粒子群优化模糊聚类的旋转机械故障诊断 [J].重庆大学学报,2011,34(6):26-30,5.

基金项目

国家自然科学基金资助项目(10976034) (10976034)

重庆大学学报

OA北大核心CSCDCSTPCD

1000-582X

访问量0
|
下载量0
段落导航相关论文