| 注册
首页|期刊导航|强激光与粒子束|基于快速模糊C均值聚类算法的红外图像分割

基于快速模糊C均值聚类算法的红外图像分割

黄永林 叶玉堂 乔闹生 陈镇龙

强激光与粒子束2011,Vol.23Issue(6):1467-1470,4.
强激光与粒子束2011,Vol.23Issue(6):1467-1470,4.DOI:10.3788/HPLPB20112306.1467

基于快速模糊C均值聚类算法的红外图像分割

Infrared image segmentation based on fast fuzzy C-means clustering

黄永林 1叶玉堂 1乔闹生 1陈镇龙1

作者信息

  • 1. 电子科技大学光电信息学院,成都610054
  • 折叠

摘要

Abstract

The fuzzy C-means (FCM) algorithm has many disadvantages such as number of clusters must be determined before FCM clustering is implemented and the algorithm needs an amount of calculation. In order to solve these problems, a novel method of fast FCM clustering is proposed. Seed pixels can be obtained by neighborhood searching of edge information firstly; Number of clusters and the value of cluster centers can be achieved by region growing method. Image is separated into cluster regions and undetermined cluster regions. The value of cluster centers and FCM are adopted to determine the undetermined cluster regions. Experiences show that the new method greatly improved the efficiency of image segmentation. Since the relationship of neighbored pixels are taken into account, the results of image segmentation can maintain perfect and distinct targets contour and improved the quality of image segmentation.

关键词

模糊C均值聚类/图像分割/区域生长/红外图像/模式识别

Key words

fuzzy C-means clustering/image segmentation/region growing/infrared image/pattern recognition

分类

信息技术与安全科学

引用本文复制引用

黄永林,叶玉堂,乔闹生,陈镇龙..基于快速模糊C均值聚类算法的红外图像分割[J].强激光与粒子束,2011,23(6):1467-1470,4.

基金项目

国防科技基础研究基金项目 ()

强激光与粒子束

OA北大核心CSCDCSTPCD

1001-4322

访问量0
|
下载量0
段落导航相关论文