| 注册
首页|期刊导航|中国机械工程|基于图像处理的钢板表面缺陷支持向量机识别

基于图像处理的钢板表面缺陷支持向量机识别

汤勃 孔建益 王兴东 陈黎

中国机械工程2011,Vol.22Issue(12):1402-1405,4.
中国机械工程2011,Vol.22Issue(12):1402-1405,4.

基于图像处理的钢板表面缺陷支持向量机识别

Steel Surface Defect Recognition Based on Support Vector Machine and Image Processing

汤勃 1孔建益 1王兴东 1陈黎1

作者信息

  • 1. 武汉科技大学,武汉,430081
  • 折叠

摘要

Abstract

Based on machine vision technology a steel plate surface defect detection was discussed. The characteristic values for six kinds of typical steel plate surface defect images were extracted and the dimensions reduced reasonably form 32 to 20. The principles and algorithm of SVM were introduced, and the method to classify the six kinds of steel plate surface defects using SVM was presented. The optimization of important parameters was obtained. The steel surface defect images have been classified with SVM,and then compared with a BP neural network algorithm. The results show that classification of steel strip surface defects based on SVM theory is effective, fast and robust.

关键词

钢板表面缺陷;支持向量机;识别与分类;图像处理

Key words

steel plate surface defect/support vector machine (SVM)/recognition and classification/image processing

分类

信息技术与安全科学

引用本文复制引用

汤勃,孔建益,王兴东,陈黎..基于图像处理的钢板表面缺陷支持向量机识别[J].中国机械工程,2011,22(12):1402-1405,4.

基金项目

高等学校博士学科点专项科研基金资助项目(20104219110001);武汉市科技攻关资助项目(200910321100) (20104219110001)

武汉科技大学青年科技骨干培育计划资助项目(2009xz24) (2009xz24)

中国机械工程

OA北大核心CSCDCSTPCD

1004-132X

访问量0
|
下载量0
段落导航相关论文