| 注册
首页|期刊导航|计算机应用研究|基于粗糙集与蚁群优化算法的特征选择方法研究

基于粗糙集与蚁群优化算法的特征选择方法研究

吴克寿 陈玉明 谢荣生 王晓栋

计算机应用研究2011,Vol.28Issue(7):2436-2438,3.
计算机应用研究2011,Vol.28Issue(7):2436-2438,3.DOI:10.3969/j.issn.1001-3695.2011.07.008

基于粗糙集与蚁群优化算法的特征选择方法研究

Rough sets and ant colony optimization based feature selection

吴克寿 1陈玉明 1谢荣生 1王晓栋1

作者信息

  • 1. 厦门理工学院计算机科学与技术系,福建厦门361024
  • 折叠

摘要

Abstract

Many existing ACO-based feature selection algorithms start from a random dot,which aim at finding the optimal fea-tures. This thesis analyzed the feature core method of rough sets and the global optimization ability of ACO, proposed a new rough set approach to feature selection based on ACO,which adopted feature significance as heuristic information. The approach started from the feature core,which changed the complete graph to a smaller one. To verify the efficiency of algorithm,carried out experiments on some standard UC1 datasets. The results demonstrate that the proposed algorithm can provide efficient solu-tion to find a minimal subset of the features.

关键词

粗糙集理论/知识约简/特征选择/蚁群优化

Key words

rough set theory/ knowledge reduction/ feature selection/ ant colony optimization

分类

计算机与自动化

引用本文复制引用

吴克寿,陈玉明,谢荣生,王晓栋..基于粗糙集与蚁群优化算法的特征选择方法研究[J].计算机应用研究,2011,28(7):2436-2438,3.

基金项目

国家自然科学基金资助项目(60903203) (60903203)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量1
|
下载量0
段落导航相关论文