| 注册
首页|期刊导航|计算机应用研究|一种改进的可能模糊聚类算法

一种改进的可能模糊聚类算法

张辰 夏士雄 刘兵

计算机应用研究2011,Vol.28Issue(8):2848-2851,2882,5.
计算机应用研究2011,Vol.28Issue(8):2848-2851,2882,5.DOI:10.3969/j.issn.1001-3695.2011.08.013

一种改进的可能模糊聚类算法

Improved possibilistic fuzzy clustering algorithm

张辰 1夏士雄 1刘兵1

作者信息

  • 1. 中国矿业大学计算机学院,江苏徐州221008
  • 折叠

摘要

Abstract

After analyzing popular clustering algorithms, such as FCM, PCM, IPCM and PFCM, they are sensitive to outliers faults in noisy environments. This paper proposed a new algorithm called sample weighted improved possibilistic fuzzy clustering method ( SWPFCM). Based on combination sample weighting and a suitable for noise environment of initialization clustering center method, SWPFCM was less sensitive to outliers. The experimental results with data sets show that SWIPCM algorithm can deal with the amount of noise data, and produce less clustering time and better clustering accuracy.

关键词

样本加权/模糊聚类/可能模糊聚类

Key words

sample weighted/ fuzzy clustering/ possibilistic fuzzy clustering

分类

信息技术与安全科学

引用本文复制引用

张辰,夏士雄,刘兵..一种改进的可能模糊聚类算法[J].计算机应用研究,2011,28(8):2848-2851,2882,5.

基金项目

国家教育部科学技术研究重点资助项目(108063) (108063)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文