| 注册
首页|期刊导航|计算机应用研究|低空间复杂度的加权有限状态转换器合成算法

低空间复杂度的加权有限状态转换器合成算法

李伟 吴及 吕萍

计算机应用研究2011,Vol.28Issue(8):2931-2934,4.
计算机应用研究2011,Vol.28Issue(8):2931-2934,4.DOI:10.3969/j.issn.1001-3695.2011.08.036

低空间复杂度的加权有限状态转换器合成算法

Low space-complexity composition algorithm for weighted finite-state transducers

李伟 1吴及 1吕萍1

作者信息

  • 1. 清华大学电子工程系,北京100084
  • 折叠

摘要

Abstract

The WFST-related composition algorithm could be used to integrate recognition models together to facilitate the utilization of knowledge during speech recognition and to improve the recognition system's performance. The general composition algorithm stores lots of useless states and transitions during it runs. It needs 1 GB or more memory to save the useless info when compose dictionary and language models, which impact the algorithm' s space complexity. To solve this problem, this paper developed a SPCA. It improved the general composition method. With the new method, the composition and removing useless info were done simultaneously. Experiments shows that the improved method achieves 14.99% and 25.72% in average and maximum memory reduction compared with the general method, and effectively reduces the composition' s space complexity.

关键词

加权有限状态转换器/合成/有向图/空间复杂度/语音识别

Key words

WFST(weighted finite-state transducer)/ composition/ digraph/ space-complexity/ speech recognition

分类

计算机与自动化

引用本文复制引用

李伟,吴及,吕萍..低空间复杂度的加权有限状态转换器合成算法[J].计算机应用研究,2011,28(8):2931-2934,4.

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文