| 注册
首页|期刊导航|计算机工程与应用|用于弹道目标跟踪的新的非线性滤波算法

用于弹道目标跟踪的新的非线性滤波算法

巫春玲 韩崇昭

计算机工程与应用2011,Vol.47Issue(20):20-23,4.
计算机工程与应用2011,Vol.47Issue(20):20-23,4.DOI:10.3778/j.issn.1002-8331.2011.20.006

用于弹道目标跟踪的新的非线性滤波算法

New nonlinear filtering algorithm for ballistic target tracking

巫春玲 1韩崇昭2

作者信息

  • 1. 长安大学电子与控制工程学院,西安710064
  • 2. 西安交通大学电子与信息工程学院,西安710049
  • 折叠

摘要

Abstract

This paper studies the problem of tracking a ballistic target in the reentry phase.It proposes an adaptive algorithm, Strong Tracking Finite-Difference Extended Kalman Filter (STFDEKF), for ballistic target tracking in reentry.This method uses polynomial approximations obtained with a Sterling interpolation formula to approximate the derivative of the nonlinear function, and uses strong tracking factors to modify the prior covariance matrix.The proposed algorithm improves the tracking accuracy, enlarges the applied area and enhances the filtering convergence.It compares the performance of the proposed algorithm with that of the Extended Kalman Filter (EKF) and the Finite-Difference Extended Kalman Filter (FDEKF) using a Monte Carlo simulation.The simulation results show that STFDEKF outperforms EKF and FDEKF in terms of tracking accuracy, filter credibility and robustness against the sensitivity to filter initial condition.It concludes that the STFDEKF is an effective algorithm for the ballistic target tracking problem being studied.

关键词

弹道目标跟踪/扩展卡尔曼滤波/有限差分/强跟踪

Key words

ballistic target tracking/extended Kalman filter/finite-difference/strong tracking

分类

信息技术与安全科学

引用本文复制引用

巫春玲,韩崇昭..用于弹道目标跟踪的新的非线性滤波算法[J].计算机工程与应用,2011,47(20):20-23,4.

基金项目

国家自然科学基金(the National Natural Science Foundation of China under Grant No.60574033) (the National Natural Science Foundation of China under Grant No.60574033)

国家重点基础研究发展规划(973)(No.2007CB311006). (973)

计算机工程与应用

OACSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文