| 注册
首页|期刊导航|计算机应用研究|单尺度词袋模型图像分类方法

单尺度词袋模型图像分类方法

陈凯 肖国强 潘珍 李正浩

计算机应用研究2011,Vol.28Issue(10):3986-3988,3.
计算机应用研究2011,Vol.28Issue(10):3986-3988,3.DOI:10.3969/j.issn.1001-3695.2011.10.106

单尺度词袋模型图像分类方法

Single-scale image classification employing Bag-of-Words model

陈凯 1肖国强 1潘珍 1李正浩2

作者信息

  • 1. 西南大学计算机与信息科学学院,重庆400715
  • 2. 重庆大学光电技术及系统教育部重点实验室,重庆400044
  • 折叠

摘要

Abstract

The general image classification methods relying on SIFT feature description need to construct multi-scale space, thus it is not only time-consuming but also irrelevant to visual sense. This paper proposed a new image classification method. It directly extracted single-scale SIFT features based grid,and described the features employing Bag-of-Words( BOW) model afterwards. Because single-scale SIFT need not build multi-scale space and retains more global information,the proposed method could reduce the computational complexity substantially and improved the classification accuracy significantly. Kxperimental results illustrate that compared with the standard SIFT based BOW model,the classification accuracy of BOW model formed from single-scale SIFT is significantly improved.

关键词

图像分类/单尺度SsIFT/视觉单词/词袋模型

Key words

image classification/ single-scale SIFT/ visual word/ BOW model

分类

信息技术与安全科学

引用本文复制引用

陈凯,肖国强,潘珍,李正浩..单尺度词袋模型图像分类方法[J].计算机应用研究,2011,28(10):3986-3988,3.

基金项目

国家自然科学基金资助项目(61003203) (61003203)

重庆市自然科学基金资助项目(CSTC2010 BB2230) (CSTC2010 BB2230)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文