| 注册
首页|期刊导航|计算机工程与应用|基于高斯混合模型的自然环境声音的识别

基于高斯混合模型的自然环境声音的识别

余清清 李应 李勇

计算机工程与应用2011,Vol.47Issue(25):152-155,164,5.
计算机工程与应用2011,Vol.47Issue(25):152-155,164,5.DOI:10.3778/j.issn.1002-8331.2011.25.040

基于高斯混合模型的自然环境声音的识别

Natural sounds recognition using GMM distribution

余清清 1李应 1李勇1

作者信息

  • 1. 福州大学数学与计算机科学学院,福州350108
  • 折叠

摘要

Abstract

A recognition method for natural sounds based on Gaussian Mixture Model (GMM) distribution is proposed. Mel-Frequency Cepstral Coefficients (MFCCs) are used to analyze natural sounds for their feature extraction.The expectation maximization algorithm is used to learn a Gaussian mixture model distribution of MFCCs for the set of audio feature vectors that describe each sound.Minimum classification error criterion and vote rule are used to yield higher recognition accuracy for natural sounds.Experimentally,compared with ^-Nearest Neighbor(KNN) method,GMM is able to achieve a higher accuracy rate for discriminating 36 classes of natural sounds.The classified accuracy rate of GMM reaches to 95.83%.

关键词

Mel频率倒谱系数/高斯混合模型/自然环境声音的识别/投票裁决

Key words

Mel-frequency cepstral coefficients/Gaussian mixture model/natural sounds recognition/vote rule

分类

信息技术与安全科学

引用本文复制引用

余清清,李应,李勇..基于高斯混合模型的自然环境声音的识别[J].计算机工程与应用,2011,47(25):152-155,164,5.

基金项目

国家自然科学基金(the National Natural Science Foundation of China under Grant No.61075022) (the National Natural Science Foundation of China under Grant No.61075022)

福建省教育厅A类科技项目(No.JA09021). (No.JA09021)

计算机工程与应用

OACSCDCSTPCD

1002-8331

访问量3
|
下载量0
段落导航相关论文