| 注册
首页|期刊导航|三峡大学学报(自然科学版)|n元m阶方阵的k次方幂和的一种新算法

n元m阶方阵的k次方幂和的一种新算法

刘兴祥 陈伟

三峡大学学报(自然科学版)2011,Vol.33Issue(4):96-100,5.
三峡大学学报(自然科学版)2011,Vol.33Issue(4):96-100,5.

n元m阶方阵的k次方幂和的一种新算法

A New Algorithm of k-th Power Sum of n-Variable m× m Matrix

刘兴祥 1陈伟1

作者信息

  • 1. 延安大学数学与计算机科学学院,陕西延安716000
  • 折叠

摘要

Abstract

By way of analog symmetric polynomial, with primary symmetric polynomial to express a kind ofspecial symmetric polynomial sk(x1,x2,···,xn) = Σn I=1 xk I(k = 0,l,2,···) that approach-Newton's formula, and by n-variable mXm elementary square matrix, a new calculation of the k-th power sum of n-variable mXmsquare matrix Sk= Σn I=1 xk I(k = 0,l,2, ···) is gained, which is similar to Newton's formula. This paper mainlydeals with the discussion of the algorithm of k-th power sum of binary mXm matrix Sk = Σ2 I=1 xk I(k = 0,l,2,···), providing some useful conclusions in the condition that binary mXm elementary square matrix, performs as the special matrix. Although only two formulas of calculating k-th power sum of n-variable m X m matrix are given, a new way of thinking and method is provided to solve this kind of problem.

关键词

方幂和/牛顿公式/n元m阶初等方阵/对称矩阵

Key words

power sum/ Newton's formula/ n-variable mXm elementary square matrix/ symmetric matrix

分类

数学

引用本文复制引用

刘兴祥,陈伟..n元m阶方阵的k次方幂和的一种新算法[J].三峡大学学报(自然科学版),2011,33(4):96-100,5.

三峡大学学报(自然科学版)

OACSTPCD

1672-948X

访问量0
|
下载量0
段落导航相关论文