| 注册
首页|期刊导航|中国农业科学|油菜氮素的多光谱图像估算模型研究

油菜氮素的多光谱图像估算模型研究

张晓东 毛罕平 左志宇 孙俊 张红涛

中国农业科学2011,Vol.44Issue(16):3323-3332,10.
中国农业科学2011,Vol.44Issue(16):3323-3332,10.DOI:10.3864/j.issn.0578-1752,2011.16.004

油菜氮素的多光谱图像估算模型研究

Multi-Spectral Images Estimation Models for Nitrogen Contents of Rape

张晓东 1毛罕平 1左志宇 1孙俊 1张红涛1

作者信息

  • 1. 江苏大学农业工程研究院/现代农业装备与技术省部共建教育部重点实验室,江苏镇江 212013
  • 折叠

摘要

Abstract

[Objective] Multi-spectral image analysis method was used to quantitatively analyze the rape total nitrogen content. [Method] The images of rape canopy were taken by the multi-spectral camera and were preprocessed by the median-filtering method. Two-dimensional maximum entropy segment method was used to complete background segmentation of multi-spectral images. [Result] By extracting mean and ratio of multi-spectral images of rape canopy , it was found that the features of ARV1, AVS560, ADV1, AVS660 and g are highly correlated with nitrogen content in the whole growth period. Considering the serious multicollinearity between multi-spectral variable, the prediction model of nitrogen content of rape at different growth stages was built by stepwise regression method. [Conclusion] The reflection intensity distribution information of the visible light and the near infrared light is sufficiently utilized in this research to diagnose the nitrogen content of rape. The multi-spectral image features of the nitrogen content of rape at different growth stages were preliminarily verified. The result shows that the method of multi-spectral image analysis can be used to quantitatively analyze the rape total nitrogen content. This provides a theoretical basis and technical support for the scientific management of rape nutrition.\

关键词

油菜/氮素/多光谱图像/逐步回归

Key words

rape/ nitrogen/ multi-spectral image/ stepwise regression

引用本文复制引用

张晓东,毛罕平,左志宇,孙俊,张红涛..油菜氮素的多光谱图像估算模型研究[J].中国农业科学,2011,44(16):3323-3332,10.

基金项目

国家自然科学基金项目(61075036)、中国博士后科学基金(20100481097)、江苏高校优势学科建设工程资助项目(苏财教(2011)8号)、江苏省农业装备与智能化高技术研究重点实验室资助项目(BM2009703)、江苏省高校自然科学基础研究重大项目(10KJA210010)、江苏大学高级专业人才基金项目(10JDG081)、江苏大学博士后基金项目(201009) (61075036)

中国农业科学

OA北大核心CSCDCSTPCD

0578-1752

访问量0
|
下载量0
段落导航相关论文