青岛大学学报(自然科学版)2011,Vol.24Issue(3):9-13,5.DOI:10.3969/j.issn.1006-1037.2011.08.003
套代数上的非线性三元Lie导子
Nonliner Triple Lie Derivations on Nest Algebras
摘要
Abstract
Let A be a associative algebra and define Lie product [a,b] = ab-ba for a,b€A. A nonlinear map j>: A-*-A is called a nonliner Lie triple derivation, if it satisfys ([[a,]] ,c) = [[^(a) ,6],c] + [[a,0 (6)],c] + [[a,6],0(c)]. Let H be a Hilbert space, and N be a nest on H, with N#{{0} ,H}. Let ^:T (N)-*T(N) be a nonlinear Lie triple derivation on T(N) , then Φ{x)=d{x)-\-rix)l for x6 T(N) , where d is an additive derivation of T(N) and r:T(N)-*-F vanishing at Lie triple products [[a,b],c]关键词
套代数/三元Lie导子/可加导子Key words
nest algebra/ Lie triple derivation/ additive derivation.分类
数理科学引用本文复制引用
陈剑慧,纪培胜,姜华..套代数上的非线性三元Lie导子[J].青岛大学学报(自然科学版),2011,24(3):9-13,5.基金项目
国家自然科学基金(10971117) (10971117)