| 注册
首页|期刊导航|计算机应用与软件|基于R-tree的高效异常轨迹检测算法

基于R-tree的高效异常轨迹检测算法

陈锦阳 刘良旭 宋加涛 王让定 管博

计算机应用与软件2011,Vol.28Issue(10):34-37,4.
计算机应用与软件2011,Vol.28Issue(10):34-37,4.

基于R-tree的高效异常轨迹检测算法

EFFICIENT OUTLIER DETECTION ALGORITHM FOR TRAJECTORY BASED ON R-TREE

陈锦阳 1刘良旭 2宋加涛 2王让定 2管博1

作者信息

  • 1. 宁波大学信息科学与工程学院 浙江宁波315211
  • 2. 宁波工程学院电子与信息工程学院 浙江宁波315016
  • 折叠

摘要

Abstract

Outlier detection is a popular data mining task. However, there is a lack of serious study on outlier detection for trajectory data, and the existing algorithms also have the limitations. So J. -C Lee et al proposed TRAOD. TRAOD can effectively detect the abnormal trajectory, but it also has the defects. It is difficult to balance the accuracy and the complexity, the parameter selection is a little bit difficult too, the algorithm needs a long time to execute. Based on TRAOD's problems, this paper proposes the R-TRAOD, it is an efficient outlier detection algorithm based on R-tree trajectory. The algorithm indexes the trajectory points through R-tree for searching the trajectory points within the territory of their domain, then according to TRAOD it detects the abnormal trajectory against the trajectory points indexed by R-tree. In this way the operation speed of the algorithm can be improved. The test of real data experiments shows that this algorithm has higher efficiency than the latest TRAOD abnormal trajectory mining algorithm.

关键词

R-tree/异常轨迹检测/TRAOD

Key words

R-tree/Abnormal trajectory detection/TRAOD

分类

信息技术与安全科学

引用本文复制引用

陈锦阳,刘良旭,宋加涛,王让定,管博..基于R-tree的高效异常轨迹检测算法[J].计算机应用与软件,2011,28(10):34-37,4.

基金项目

国家自然科学基金(60972163) (60972163)

宁波市自然科学基金(2009A610090). (2009A610090)

计算机应用与软件

OA北大核心CSCDCSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文