| 注册
首页|期刊导航|计算机应用与软件|基于HMM的驾驶员疲劳识别在智能汽车空间的应用

基于HMM的驾驶员疲劳识别在智能汽车空间的应用

郁伟炜 吴卿

计算机应用与软件2011,Vol.28Issue(10):43-46,4.
计算机应用与软件2011,Vol.28Issue(10):43-46,4.

基于HMM的驾驶员疲劳识别在智能汽车空间的应用

APPLYING HMM-BASED DRIVER FATIGUE RECOGNITION IN SMART VEHICLE SPACE

郁伟炜 1吴卿1

作者信息

  • 1. 杭州电子科技大学计算机学院 浙江杭州310018
  • 折叠

摘要

Abstract

Smart vehicle space is a specific and focused performance of pervasive computing; this paper presents an application about driver fatigue recognition based on hidden Markov model ( HMM). The authors select PERCLOS feature variable as a low-level context of driver fatigue evaluation, and establish the HMM through a large number of sample data training. Then they identify the most likely driver's hidden state from the observation sequence using Viterbi algorithm,and remind drivers to ensure their safe driving behaviour. Finally, a case study in simulation environment confirmed the validity of the scheme.

关键词

智能汽车空间/隐马尔科夫模型/上下文推理/驾驶员疲劳/PERCLOS

Key words

Smart vehicle space/HMM/Context reasoning/Driver fatigue/PERCLOS

分类

信息技术与安全科学

引用本文复制引用

郁伟炜,吴卿..基于HMM的驾驶员疲劳识别在智能汽车空间的应用[J].计算机应用与软件,2011,28(10):43-46,4.

基金项目

国家自然科学基金项目(60703088) (60703088)

计算机应用与软件

OA北大核心CSCDCSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文