| 注册
首页|期刊导航|计算机应用与软件|改进相似性度量方法的协同过滤推荐算法

改进相似性度量方法的协同过滤推荐算法

吴月萍 郑建国

计算机应用与软件2011,Vol.28Issue(10):7-8,42,3.
计算机应用与软件2011,Vol.28Issue(10):7-8,42,3.

改进相似性度量方法的协同过滤推荐算法

COLLABORATIVE FILTERING RECOMMENDATION ALGORITHM ON IMPROVED SIMILARITY MEASURE METHOD

吴月萍 1郑建国2

作者信息

  • 1. 上海第二工业大学计算机与信息学院 上海201209
  • 2. 东华大学旭日工商管理学院 上海200051
  • 折叠

摘要

Abstract

Collaborative filtering recommendation technology is the most successful personalised recommendation technology ever applied to e-commerce recommendation systems. As the scale of e-commerce expands, the magnitudes of users and commodities grow rapidly, which persistently worsens the performance of traditional recommendation technology. Therefore a new similarity measure method is put forward to automatically generate weighting factors, dynamically combine attribute similarity and score similarity, create a reasonable item similarity to find out the nearest neighbouring item, and finally realise user rating recommendation. Experimental results prove the algorithm improves recommendation steadiness and precision to a certain extent and solves the cold start problem.

关键词

相似度/冷启动/协同过滤/推荐/最近邻居

Key words

Similarity/Cold start/Collaborative filter/Recommendation/Nearest neighbour

分类

信息技术与安全科学

引用本文复制引用

吴月萍,郑建国..改进相似性度量方法的协同过滤推荐算法[J].计算机应用与软件,2011,28(10):7-8,42,3.

基金项目

国家自然科学基金资助(70971020) (70971020)

计算机应用与软件

OA北大核心CSCDCSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文