| 注册
首页|期刊导航|高技术通讯|基于Bloch量子遗传算法的倒立摆模糊控制器优化设计

基于Bloch量子遗传算法的倒立摆模糊控制器优化设计

李盼池 宋考平 杨二龙

高技术通讯2011,Vol.21Issue(9):967-973,7.
高技术通讯2011,Vol.21Issue(9):967-973,7.DOI:10.3772/j.issn.1002-0470.2011.09.014

基于Bloch量子遗传算法的倒立摆模糊控制器优化设计

Fuzzy controller optimization for inverted pendulum systems based on the Bloch quantum genetic algorithm

李盼池 1宋考平 2杨二龙1

作者信息

  • 1. 东北石油大学石油与天然气工程博士后科研流动站 大庆163318
  • 2. 东北石油大学计算机与信息技术学院 大庆163318
  • 折叠

摘要

Abstract

To solve the optimization design of fuzzy controllers for inverted pendulums, an novel design optimization approach based on the Bloch quantum genetic algorithm ( BQGA) is proposed. This approach regards the three Bloch coordinates of each qubit as paratactic genes. Each chromosome contains three gene chains, and each of the gene chains represents an optimization solution that is a group of controller parameters, which can accelerate the convergence process for the same number of chromosomes as the common quantum genetic algorithm (CQGA). With the fuzzy neural network controller (FNNC) for a single inverted pendulum being an example, the experiment was perfomed and the control effect was discussed in detail based on two initial states. The experimental results demonstrate that the BQGA-based design is obviously superior to the CQGA-based design, and the FNNC designed using the BQGA-based approach is obviously superior to the LQR controller when the systematical parameter changes.

关键词

量子遗传算法(QGA)/模糊控制器/倒立摆控制/参数优化/算法设计

Key words

quantum genetic algorithm (QGA)/fuzzy controller/inverted pendulum control/parameter optimization /algorithm design

引用本文复制引用

李盼池,宋考平,杨二龙..基于Bloch量子遗传算法的倒立摆模糊控制器优化设计[J].高技术通讯,2011,21(9):967-973,7.

基金项目

国家自然科学基金(61170132),国家博士后基金(20090460864,201003405),黑龙江省博士后基金(LBH-Z09289)和黑龙江省教育厅科学技术基金(11551015,11551017)资助项目. (61170132)

高技术通讯

OA北大核心CSCDCSTPCD

1002-0470

访问量0
|
下载量0
段落导航相关论文