| 注册
首页|期刊导航|计算机工程|基于特征匹配和卡尔曼滤波的机器人视觉稳像

基于特征匹配和卡尔曼滤波的机器人视觉稳像

徐崟 王斌锐 金英连

计算机工程2011,Vol.37Issue(20):194-196,199,4.
计算机工程2011,Vol.37Issue(20):194-196,199,4.DOI:10.3969/j.issn.1000-3428.2011.20.067

基于特征匹配和卡尔曼滤波的机器人视觉稳像

Robot Vision Image Stabilization Based on Feature Matching and Kalman Filtering

徐崟 1王斌锐 1金英连1

作者信息

  • 1. 中国计量学院机电工程学院,杭州310018
  • 折叠

摘要

Abstract

Video stabilization is the key of robot vision. This paper establishes an image affine kinematics model with 6 parameters and its recurrence relations. Kanade-Lucas-Tomasi(KLT) feature matching method is designed based on grads. Optimization of sum of absolute difference is used to match feature points. Through analysis of over-determined image motion equations, observation model of intended motion parameters is derived, and the least squares algorithm is used to solve equations. Through reverse computing of kinematics model using filtered parameters, jitter is compensated and stabilized images are achieved. Experiments on autonomous mobile robot test-bed show that the feature points are uniform distributed and matching is faster by using KLT algorithm with sub-regional fast computing, and the relative parameters filter effect is smoother than the absolute parameters filtering.

关键词

KLT算法/特征匹配/运动模型/卡尔曼滤波/稳像

Key words

Kanade-Lucas-Tomasi(KLT) algorithm/ feature matching/ motion model/ Kalman filtering/ image stabilization

分类

信息技术与安全科学

引用本文复制引用

徐崟,王斌锐,金英连..基于特征匹配和卡尔曼滤波的机器人视觉稳像[J].计算机工程,2011,37(20):194-196,199,4.

基金项目

国家自然科学基金资助项目(50905170) (50905170)

浙江省自然科学基金资助项目(Y1090042) (Y1090042)

计算机工程

OACSCDCSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文