| 注册
首页|期刊导航|桂林理工大学学报|动态模糊神经网络在变形预测中的应用

动态模糊神经网络在变形预测中的应用

肖桂元 刘立龙

桂林理工大学学报2011,Vol.31Issue(3):395-398,4.
桂林理工大学学报2011,Vol.31Issue(3):395-398,4.

动态模糊神经网络在变形预测中的应用

Application of Dynamic Fuzzy Neural Network to Deformation Prediction

肖桂元 1刘立龙2

作者信息

  • 1. 同济大学道路与交通工程教育部重点实验室,上海201804
  • 2. 桂林理工大学土木与建筑工程学院,广西桂林541004
  • 折叠

摘要

Abstract

To get better prediction precision in settlement and deformation of the bridge piers and reduce errors in project monitoring practices, the learning algorithm and determination of network parameters of dynamic fuzzy neural network (DFNN) based on extended radial basis function neural networks (RBFNN) are introduced. In the selection of subsidence monitoring data from a bridge for the adaptive learning and training based on RBFNN and DFNN, the experimental results show that the prediction error of RBFNN is about 0. 15 mm, while the DFNN is about 0. 07 mm. The prediction precision of DFNN is better than RBFNN. Thus the advantages of dynamic fuzzy technology and neural network are confirmed in combining adaptive learning and training process.

关键词

动态模糊神经网络/径向基函数神经网络/变形预测

Key words

dynamic fuzzy neural network/ radial basis function neural network/ deformation prediction

分类

交通工程

引用本文复制引用

肖桂元,刘立龙..动态模糊神经网络在变形预测中的应用[J].桂林理工大学学报,2011,31(3):395-398,4.

基金项目

国家自然科学基金项目(41064001 ()

51108110) ()

桂林理工大学学报

OA北大核心CSTPCD

1674-9057

访问量0
|
下载量0
段落导航相关论文