| 注册
首页|期刊导航|火力与指挥控制|改进关联规则挖掘算法航空发动机故障检测

改进关联规则挖掘算法航空发动机故障检测

芮少辉 张凤鸣 徐显亮

火力与指挥控制2011,Vol.36Issue(9):199-202,4.
火力与指挥控制2011,Vol.36Issue(9):199-202,4.

改进关联规则挖掘算法航空发动机故障检测

The Fault Detection of Aero-engine Based on the Improved Association Rules Mining

芮少辉 1张凤鸣 1徐显亮1

作者信息

  • 1. 空军工程大学,西安 710038
  • 折叠

摘要

Abstract

Through deeply researching on the whole structure of the aero-engine data and some popular ways in the aero-engine fault detection, the advice to apply the association rules mining on aero-enginefault detection is raised. However, the classical algorithm of association rules mining--Apriori has thebottleneck of efficiency when dealing with the huge database, so an improved and faster mining algorithm, which can decrease the database scale and reduce the amount of candidate aggregate constantly, is put forward. The improved algorithm is proved to be feasible and effective through the mining in the real data from the aero-engine's trial runs.

关键词

数据挖掘/关联规则/Apriori算法/故障检测

Key words

data mining,association rules,Apriori algorithm,fault detection

分类

信息技术与安全科学

引用本文复制引用

芮少辉,张凤鸣,徐显亮..改进关联规则挖掘算法航空发动机故障检测[J].火力与指挥控制,2011,36(9):199-202,4.

基金项目

国家“863”高技术计划基金资助项目(2007AAJ127) (2007AAJ127)

火力与指挥控制

OA北大核心CSCDCSTPCD

1002-0640

访问量0
|
下载量0
段落导航相关论文