| 注册
首页|期刊导航|东南大学学报(自然科学版)|基于CS与K-SVD的欠定盲源分离稀疏分量分析

基于CS与K-SVD的欠定盲源分离稀疏分量分析

余丰 奚吉 赵力 邹采荣

东南大学学报(自然科学版)2011,Vol.41Issue(6):1127-1131,5.
东南大学学报(自然科学版)2011,Vol.41Issue(6):1127-1131,5.DOI:10.3969/j.issn.1001-0505.2011.06.002

基于CS与K-SVD的欠定盲源分离稀疏分量分析

Sparse presentation of underdetermined blind source separation based on compressed sensing and K-SVD

余丰 1奚吉 1赵力 1邹采荣1

作者信息

  • 1. 东南大学水声信号处理教育部重点实验室,南京210096
  • 折叠

摘要

Abstract

To improve the precision of blind source separation, a method based on the compressed sensing (CS) and K-means singular value decomposition (K-SVD) is proposed. First, the equivalence between the problem of estimating the source in underdetermined blind source separation and the compressed sensing is analyzed and the framework of compressed sensing is built. Then K-SVD is used to train sparse dictionary self-adaptive under the framework. Finally the sparse component is computed using classic basis pursuit algorithm. Through lots of experiments the algorithm is proved to be a better algorithm, which inherits the advantages of sparse presentation ability and can significantly improve the precision of blind source separation. Different from traditional two steps methods , the algorithm proposed gets sparse presentation of signal taking a new way that combine CS and K-SVD, it shows that sparse presentation influences the result of blind resource separation directly.

关键词

欠定盲源分离/稀疏表示/压缩感知

Key words

underdetermined bund source separation/sparse representation/compressed sensing

分类

信息技术与安全科学

引用本文复制引用

余丰,奚吉,赵力,邹采荣..基于CS与K-SVD的欠定盲源分离稀疏分量分析[J].东南大学学报(自然科学版),2011,41(6):1127-1131,5.

基金项目

国家自然科学基金资助项目(60872073,60975017,51075068)、广东省自然科学基金资助项目(10252800001000001)、东南大学水声信号处理教育部重点实验室开放研究基金资助项目(UASP1003). (60872073,60975017,51075068)

东南大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1001-0505

访问量0
|
下载量0
段落导航相关论文