| 注册
首页|期刊导航|桂林电子科技大学学报|基于模糊神经网络的自适应精确曝气系统设计

基于模糊神经网络的自适应精确曝气系统设计

孙骞 许睿 龚琼

桂林电子科技大学学报2011,Vol.31Issue(5):382-385,4.
桂林电子科技大学学报2011,Vol.31Issue(5):382-385,4.

基于模糊神经网络的自适应精确曝气系统设计

Adaptive aeration control scheme design based on fuzzy neural network

孙骞 1许睿 2龚琼2

作者信息

  • 1. 桂林市环境保护局,广西桂林541002
  • 2. 桂林电子科技大学生命与环境科学学院,广西桂林541004
  • 折叠

摘要

Abstract

Based on fuzzy neural network theory, auto regressive ergodic (ARX) model and fuzzy neural network model (FNNM) were combined to design an adaptive feed forward-feedback precise aeration control system for reducing redundant energy waste caused by aeration and dissolved oxygen fluctuations in the current wastewater treatment aeration process. Wastewater treatment plant biological pool data as training samples, the adaptive fuzzy neural network model accurately aeration was compared with the traditional PID control, the results show that the settling time is faster, and the fluctuations of dissolved oxygen concentration is smaller in the system.

关键词

模糊神经网络模型/曝气/时滞

Key words

FNNM/ aeration/ delay

分类

信息技术与安全科学

引用本文复制引用

孙骞,许睿,龚琼..基于模糊神经网络的自适应精确曝气系统设计[J].桂林电子科技大学学报,2011,31(5):382-385,4.

基金项目

国家科技支撑计划(2011BAK12B04) (2011BAK12B04)

环保部公益性专项(200909060) (200909060)

中国博士后基金(20110491727) (20110491727)

广西科学研究和技术开发计划(GKG1140002-2-4) (GKG1140002-2-4)

桂林电子科技大学学报

1673-808X

访问量0
|
下载量0
段落导航相关论文