华东师范大学学报(自然科学版)Issue(5):79-87,9.DOI:10.3969/j.issn.1000-5641.2011.05.012
带临界指数的奇异椭圆方程Neumann问题多重解的存在性
Existence of multiple solutions for singular elliptic equations involving critical exponents with Neumann boundary condition
摘要
Abstract
By using variational methods, the existence and multiplicity of weak solutions for Neumann boundary problem for some singular elliptic equations involving critical Sobolev-Hardy exponents and Hardy terms was studied on bounded domain ft C RN. If f(x,t) satisfies the non-quadratic condition, based on the dual fountain theorem and the means of straightening the boundary, we proved that there exists A* > 0 such that for any A € (0, A*), this problem has a sequence of solutions {uκ} C W1'2(c) such that J(uk),< 0 and J(uκ) ->0 as κ→∞.关键词
Neumann问题/Sobolev-Hardy临界指数/(PS)*c条件/对偶喷泉定理Key words
Neumann problem/ critical Sobolev-Hardy exponent/ (PS)c condition/ dual fountain theorem分类
数理科学引用本文复制引用
陈自高..带临界指数的奇异椭圆方程Neumann问题多重解的存在性[J].华东师范大学学报(自然科学版),2011,(5):79-87,9.基金项目
河南省科技厅自然科学基金(102102210216) (102102210216)
河南省教育厅自然科学基金(2010A110012) (2010A110012)