| 注册
首页|期刊导航|重庆理工大学学报:自然科学|基于径向基函数神经网络的电动汽车动力电池SOC模型

基于径向基函数神经网络的电动汽车动力电池SOC模型

米林 赵孟娜 秦甲磊 吴旋

重庆理工大学学报:自然科学Issue(10):1-5,5.
重庆理工大学学报:自然科学Issue(10):1-5,5.

基于径向基函数神经网络的电动汽车动力电池SOC模型

Model in State of Charge for of Electric Vehicle Power Battery Based on Radial Basis Function Neural Network

米林 1赵孟娜 1秦甲磊 1吴旋1

作者信息

  • 1. 重庆理工大学重庆汽车学院,重庆400054
  • 折叠

摘要

Abstract

Combining with the estimation of the batteries' capacity, this paper analyzed the method of radial basis function neural network and the principle of estimating the state of charge (SOC) of electric vehicles power batteries. In this work we estimated the state of charge (SOC) of electric vehicles power batteries by using radial basis function neural network based on a simplified model, and analyzed the experimental results. The results showed that we could estimate the real duration of the state of charge (SOC) by using the parameters of batteries' operating voltage, current and surface temperature in the model. We could greatly improve the accuracy of the SOC by using the radial basis function neural network

关键词

径向基函数/神经网络/电池/SOC

Key words

radial basis function/neural network/battery/SOC

分类

信息技术与安全科学

引用本文复制引用

米林,赵孟娜,秦甲磊,吴旋..基于径向基函数神经网络的电动汽车动力电池SOC模型[J].重庆理工大学学报:自然科学,2011,(10):1-5,5.

基金项目

重庆市教委科学技术研究项目 ()

重庆理工大学学报:自然科学

OACSTPCD

1674-8425

访问量2
|
下载量0
段落导航相关论文