| 注册
首页|期刊导航|重庆理工大学学报:自然科学|非光滑凸半无限规划的最优性条件

非光滑凸半无限规划的最优性条件

戴素芬

重庆理工大学学报:自然科学2012,Vol.26Issue(1):119-126,8.
重庆理工大学学报:自然科学2012,Vol.26Issue(1):119-126,8.

非光滑凸半无限规划的最优性条件

Condition of Optimality in Semi-infinite Programming for Non-smooth Convex

戴素芬1

作者信息

  • 1. 重庆师范大学,重庆401331
  • 折叠

摘要

Abstract

This paper gives characterizations of optimal solutions to the non-differentiable convex semi-infinite programming problem,which involve the notion of Lagrangian saddle-point.Giving the necessary conditions for optimality,the local and global constraint qualifications are established.These constraint qualifications are based on the property of Farkas-Minkowski,which plays an important role in relation to certain systems obtained by linearization feasible set.It proved that Slater's qualification implies those qualifications.

关键词

半无限规划/凸函数/拉格朗日鞍点/约束品性/最优性条件/F-M系统

Key words

semi-infinite programming/convex function/Lagrangin saddle-point/constraint qualifications/optimality condition/Farkas-Minkowski system

分类

数理科学

引用本文复制引用

戴素芬..非光滑凸半无限规划的最优性条件[J].重庆理工大学学报:自然科学,2012,26(1):119-126,8.

重庆理工大学学报:自然科学

OACSTPCD

1674-8425

访问量0
|
下载量0
段落导航相关论文