| 注册
首页|期刊导航|电工技术学报|基于多标签RBF神经网络的电能质量复合扰动分类方法

基于多标签RBF神经网络的电能质量复合扰动分类方法

管春 周雒维 卢伟国

电工技术学报2011,Vol.26Issue(8):198-204,7.
电工技术学报2011,Vol.26Issue(8):198-204,7.

基于多标签RBF神经网络的电能质量复合扰动分类方法

Recognition of Multiple Power Quality Disturbances Using Multi-Label RBF Neural Networks

管春 1周雒维 2卢伟国1

作者信息

  • 1. 重庆大学输配电装备及系统安全与新技术国家重点实验室,重庆400044
  • 2. 重庆邮电大学通信与信息工程学院,重庆400065
  • 折叠

摘要

Abstract

A multi-label ranking learning method named ML-RBF is designed to identify the type of multiple power quality disturbances based on RBF neural networks and C-means clustering algorithm.Firstly,several common power quality disturbances and their compound ones are decomposed by discrete wavelet transform,and the norm energy entropy of the wavelet coefficients of each level are extracted as eigenvectors.And then,the eigenvectors are mapped into the input of the RBF neural networks using C-means clustering algorithm.Finally,the type of multiple power quality disturbances is predicted through the RBF neural networks.The simulation results show that ML-RBF can recognize the multiple power quality disturbances effectively under different noise conditions.

关键词

电能质量/多标签分类/径向基函数/小波变换/C-均值聚类

Key words

Power quality/multi-label classification/RBF/wavelet transform/C-means clustering

分类

动力与电气工程

引用本文复制引用

管春,周雒维,卢伟国..基于多标签RBF神经网络的电能质量复合扰动分类方法[J].电工技术学报,2011,26(8):198-204,7.

基金项目

国家自然科学基金 ()

重庆邮电大学自然科学基金(A2009-41)资助项目 ()

电工技术学报

OA北大核心CSCDCSTPCD

1000-6753

访问量0
|
下载量0
段落导航相关论文