| 注册
首页|期刊导航|电源技术|基于遗传算法和BP神经网络的电池容量预测

基于遗传算法和BP神经网络的电池容量预测

冯楠 王振臣 胖莹

电源技术2011,Vol.35Issue(12):1586-1588,3.
电源技术2011,Vol.35Issue(12):1586-1588,3.

基于遗传算法和BP神经网络的电池容量预测

BP neural networks based on genetic algorithms and its application in prediction of battery capacity

冯楠 1王振臣 1胖莹1

作者信息

  • 1. 燕山大学电院工业计算机控制工程系河北省重点实验室,山东秦皇岛066004
  • 折叠

摘要

Abstract

For predicting the state of charge (SOC) of pure electric car battery precisely, BP neural network was adopted to predict the state of charge of battery, to create the model and to utilize GA to optimize its weights and bias, analyzing many factors that affecting the battery residual capacity. Finally, the emulation program written by MATLAB multiple sets of data were tested and compared with pure BP network. The results show that the optimized network has a short training time and high accuracy, and the prediction of the battery capacity is effective.

关键词

电池容量/BP网络/遗传算法

Key words

battery capacity/ BP neural network/ GA

分类

信息技术与安全科学

引用本文复制引用

冯楠,王振臣,胖莹..基于遗传算法和BP神经网络的电池容量预测[J].电源技术,2011,35(12):1586-1588,3.

电源技术

OA北大核心CSCDCSTPCD

1002-087X

访问量0
|
下载量0
段落导航相关论文