| 注册
首页|期刊导航|电子科技大学学报|基于频繁闭项集的新关联分类算法ACCF

基于频繁闭项集的新关联分类算法ACCF

李学明 杨阳 秦东霞 周尚波

电子科技大学学报2012,Vol.41Issue(1):104-109,6.
电子科技大学学报2012,Vol.41Issue(1):104-109,6.DOI:10.3969/j.issn.1001-0548.2012.01.020

基于频繁闭项集的新关联分类算法ACCF

Associative Classification Based on Closed Frequent Itemsets

李学明 1杨阳 1秦东霞 2周尚波1

作者信息

  • 1. 重庆大学计算机学院 重庆沙坪坝区400044
  • 2. 周口师范学院计算机科学与技术系 河南周口466200
  • 折叠

摘要

Abstract

A new associative classification method named ACCF is presented based on the closed frequent itemsets. This method first mines all closed frequent itemsets and the candidate class association rules (CARs), and then constructs classifier based the selected CARs from the candidate CARS. The new instances are finally classified by a new way. Our theoretical analysis and substantial experiments on 18 datasets from UCI repository of machine learning databases show that ACCF is highly effective at classification of various kinds of datasets. Compared with the typical associative classification algorithms, ACCF can mine much less CARs and has higher average classification accuracy.

关键词

关联分类/类关联规则/频繁闭项集/数据挖掘

Key words

associative classification/class association rule/closed frequent itemsets/data mining

分类

信息技术与安全科学

引用本文复制引用

李学明,杨阳,秦东霞,周尚波..基于频繁闭项集的新关联分类算法ACCF[J].电子科技大学学报,2012,41(1):104-109,6.

基金项目

国家自然科学基金(60873200) (60873200)

重庆市重大科技攻关项目(CSTC,2009AB2221) (CSTC,2009AB2221)

电子科技大学学报

OA北大核心CSCDCSTPCD

1001-0548

访问量0
|
下载量0
段落导航相关论文