| 注册
首页|期刊导航|高技术通讯|基于多视角二维主动学习的多标签分类

基于多视角二维主动学习的多标签分类

张晓宇

高技术通讯2011,Vol.21Issue(12):1312-1317,6.
高技术通讯2011,Vol.21Issue(12):1312-1317,6.DOI:10.3772/j.issn.1002-0470.2011.12.015

基于多视角二维主动学习的多标签分类

Multi-label classification based on multi-view two-dimensional active learning

张晓宇1

作者信息

  • 1. 中国科学技术信息研究所 北京100038
  • 折叠

摘要

Abstract

This paper presents the multi-view two-dimensional active learning (MV-2DAL) algorithm for multi-label image classification so as to thoroughly explore the redundancies along the dimensions of sample, label and view, by the organic integration of the active learning with the multi-view learning. Taking a sample-label pair as the basic labeling unit, the algorithm calculates the uncertainties from the dimensions of sample and label within each view u-sing the two-dimensional active learning, and captures the uncertainties over different views based on the multi-view fusion. The overall uncertainty along the three dimensions is obtained to detect the most informative sample-label pairs. The experiments on the real-world multi-label image classification demonstrate that the proposed MV-2DAL algorithm is effective for redundancy reduction, and thus greatly alleviates the burden on human labeling.

关键词

主动学习(AL)/多视角学习/多标签分类/图像分类/多模态融合

Key words

active learning ( AL)/multi-view learning/multi-label classification/image classification/multi-model fusion

引用本文复制引用

张晓宇..基于多视角二维主动学习的多标签分类[J].高技术通讯,2011,21(12):1312-1317,6.

基金项目

中央级公益性科研院所基本科研业务费专项资金(ZD2011-7-3)和中国科学技术信息研究所科研预研基金(YY-201114)资助项目. (ZD2011-7-3)

高技术通讯

OA北大核心CSCDCSTPCD

1002-0470

访问量0
|
下载量0
段落导航相关论文