哈尔滨工程大学学报2011,Vol.32Issue(10):1391-1394,4.DOI:10.3969/j.issn.1006-7043.2011.10.023
广义Schur补为零的一些分块矩阵的Drazin逆表达式
Representations for the Drazin inverse of several block matrices with a generalized Schur complement equal to zero
摘要
Abstract
The representation of the Drazin inverse of a 2 x 2 block matrix not only has great theoretical value in the generalized inverse theory,but also plays an important role in the expression of the analytical solution of a general-ized system in control theory. Let complex matrix M=[A B C D],where A and D,are square and S =D-CADB isthe generalized Schur complement. Using the generalized Schur complement of block matrix M to give the representation of the Drazin inverse of a partitioned matrix is currently a hot research issue. In this paper,the authors gave the representations of the Drazin inverse of M when the generalized Schur complement S was zero,BCAπ was r-nil-potent matrix,and(I+BC(AD)2)ABCAπ =O.关键词
Drazin逆/分块矩阵/指标/广义Schur补Key words
Drazin inverse/block matrix/index/generalized Schur complement分类
数理科学引用本文复制引用
卜长江,刘广峰,白淑艳..广义Schur补为零的一些分块矩阵的Drazin逆表达式[J].哈尔滨工程大学学报,2011,32(10):1391-1394,4.基金项目
黑龙江省自然科学基金资助项目(159110120002). (159110120002)