| 注册
首页|期刊导航|火力与指挥控制|基于改进粒子群优化RBF神经网络的算法

基于改进粒子群优化RBF神经网络的算法

李辉 蔡敏 谈亮

火力与指挥控制2012,Vol.37Issue(2):144-146,150,4.
火力与指挥控制2012,Vol.37Issue(2):144-146,150,4.

基于改进粒子群优化RBF神经网络的算法

Algorithm Research of RBF Neural Network Based on Improved PSO

李辉 1蔡敏 1谈亮1

作者信息

  • 1. 海军指挥学院埔口分院,南京211800
  • 折叠

摘要

Abstract

In view of the defect of particle swarm optimization which easily gets into partial extremum, an improved particle swarm optimization algorithm is put out,and the algorithm is applied to the parameter selecting of RBF neural network kernel function. The best parameter vector is searched in the whole space, according to coding means, iterative formula, fitness function which are mentionedin the paper. The proves that RBF neural network based on improved PSO has faster convergent speed, and higher error precision.

关键词

粒子群算法/RBF神经网络/局部搜索算子/仿真

Key words

particle swarm optimization,RBF neural network,Local searching operator,simulation

分类

信息技术与安全科学

引用本文复制引用

李辉,蔡敏,谈亮..基于改进粒子群优化RBF神经网络的算法[J].火力与指挥控制,2012,37(2):144-146,150,4.

基金项目

海军"十一五"预研基金资助项目(4010311030202) (4010311030202)

火力与指挥控制

OA北大核心CSCDCSTPCD

1002-0640

访问量0
|
下载量0
段落导航相关论文