| 注册
首页|期刊导航|集美大学学报:自然科学版|一种基于数据挖掘的Snort系统的设计与应用

一种基于数据挖掘的Snort系统的设计与应用

魏德志 王奇光 林丽娜

集美大学学报:自然科学版2011,Vol.16Issue(5):397-400,4.
集美大学学报:自然科学版2011,Vol.16Issue(5):397-400,4.

一种基于数据挖掘的Snort系统的设计与应用

Design and Application of a Snort System Based on Data Mining

魏德志 1王奇光 1林丽娜1

作者信息

  • 1. 集美大学诚毅学院,福建厦门361021
  • 折叠

摘要

Abstract

In order to improve the efficiency of intrusion detection,the paper proposed an improved Snort system based on data mining.The system took advantage of the data mining in intrusion detection,and emplayed the improved Apriori algorithm.A data was added anomaly detection module to the Snort system,amended the fault of Snort,and improved the rate of detection.The simulation results and the actual application of the network environment showed that the improved system had a higher performance than the original Snort,and could detect unknown intrusion and enhance the security of computer systems.

关键词

数据挖掘/入侵检测/Apriori算法/Snort

Key words

data mining/intrusion detection/Apriori algorithm/Snort

分类

信息技术与安全科学

引用本文复制引用

魏德志,王奇光,林丽娜..一种基于数据挖掘的Snort系统的设计与应用[J].集美大学学报:自然科学版,2011,16(5):397-400,4.

基金项目

福建省仿脑智能系统重点实验室开放课题项目 ()

集美大学学报:自然科学版

1007-7405

访问量0
|
下载量0
段落导航相关论文