| 注册
首页|期刊导航|计算机工程与应用|非线性多维时问序列模式分类的新方法

非线性多维时问序列模式分类的新方法

程健 陈光昀 龚平华 朱小强

计算机工程与应用2011,Vol.47Issue(32):128-131,4.
计算机工程与应用2011,Vol.47Issue(32):128-131,4.DOI:10.3778/j.issn.1002-8331.2011.32.037

非线性多维时问序列模式分类的新方法

Novel method for patterns classification of nonlinear multidimensional time series

程健 1陈光昀 2龚平华 1朱小强1

作者信息

  • 1. 清华大学自动化系,清华信息技术国家实验室,北京100084
  • 2. 中国矿业大学信息与电气工程学院,江苏徐州221116
  • 折叠

摘要

Abstract

Pattern classification from nonlinear multivariate time series is an important problem in process engineering.This paper introduces a generic approach to detect patterns and identify their class incorporating manifold learning and support vector classifier.K-Isomap.a kernelized manifold learning algorithm,is employed to project multidimensional nonlinear time series onto low-dimensional feature space and realize nonlinear dimensionality reduction.Pattern classifier is designed to identify the pattern of nonlinear time series based on support vector machines in low-dimensional feature space.This method takes the advantage of the kernelized manifold learning algorithm and obtains better performance.Experimental results on Tennessee Eastman(TE) process demonstrate the validity and effectiveness of the proposed method.

关键词

非线性时间序列/K-Isomap/支持向量机/模式分类/TE过程

Key words

nonlinear time series/K-Isomap/support vector machines/patterns classification/Tennessee Eastman(TE) process

分类

信息技术与安全科学

引用本文复制引用

程健,陈光昀,龚平华,朱小强..非线性多维时问序列模式分类的新方法[J].计算机工程与应用,2011,47(32):128-131,4.

基金项目

国家自然科学基金(the National Natural Science Foundation of China under Grant No.60835002) (the National Natural Science Foundation of China under Grant No.60835002)

国家博士后科学基金(No.20090460328). (No.20090460328)

计算机工程与应用

OACSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文