| 注册
首页|期刊导航|计算机工程与应用|基于马氏距离特征加权的模糊聚类新算法

基于马氏距离特征加权的模糊聚类新算法

蔡静颖 谢福鼎 张永

计算机工程与应用2012,Vol.48Issue(5):198-200,3.
计算机工程与应用2012,Vol.48Issue(5):198-200,3.DOI:10.3778/j.issn.1002-8331.2012.05.057

基于马氏距离特征加权的模糊聚类新算法

New fuzzy clustering algorithm based on feature weighted Mahalanobis distances

蔡静颖 1谢福鼎 2张永2

作者信息

  • 1. 牡丹江师范学院计算机科学与技术系,黑龙江牡丹江157011
  • 2. 辽宁师范大学计算机与信息学院,辽宁大连116081
  • 折叠

摘要

Abstract

Fuzzy clustering analysis is an important research field of the fuzzy pattern recognition, and the Fuzzy C-Means algorithm (FCM) is the most classical algorithm. It regards the sample features have the same contribution to the cluster result; not thinking the different features may have different impacts on the cluster result. When FCM processes some datasets of high correlation, error probability will be increased. Focusing on above two problems, this paper proposes an improved new fuzzy clustering algorithm based on feature weighted Mahalanobis distance function. Using adaptive Mahaianobis distance to weight the feature, the new algorithm can effectively cluster to the datasets of high correlation. Experiment illustrates its effectiveness and feasibility.

关键词

模糊C均值/马氏距离/属性相关/特征加权

Key words

Fuzzy C-Means/ Mahalanobis distances/ correlation of attributes/ feature weighted

分类

信息技术与安全科学

引用本文复制引用

蔡静颖,谢福鼎,张永..基于马氏距离特征加权的模糊聚类新算法[J].计算机工程与应用,2012,48(5):198-200,3.

基金项目

国家自然科学基金(No.10771092) (No.10771092)

辽宁省科技厅博士启动基金(No.20081079) (No.20081079)

辽宁省教育厅高等学校科研项目资助(No.2008347). (No.2008347)

计算机工程与应用

OACSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文