| 注册
首页|期刊导航|计算机与数字工程|基于KD-Tree搜索和SURF特征的图像匹配算法研究

基于KD-Tree搜索和SURF特征的图像匹配算法研究

杜振鹏 李德华

计算机与数字工程2012,Vol.40Issue(2):96-98,126,4.
计算机与数字工程2012,Vol.40Issue(2):96-98,126,4.

基于KD-Tree搜索和SURF特征的图像匹配算法研究

Image Matching Algorithm Research Based on KD-Tree Search and SURF Features

杜振鹏 1李德华1

作者信息

  • 1. 华中科技大学图像识别与人工智能研究所 武汉430074
  • 折叠

摘要

Abstract

According to the problem of long search time in detecting and matching features of image matching, so in this paper, an image matching algorithm based on KD-Tree and SURF features is researched. Firstly extract SURF features of images and create feature vectors, then build KD-Trees for these feature vectors, finally complete the image matching work by calculating the nearest neighbor vector which is nearest to each feature vector. The experimental results express that, the speed of detecting features by SURF algorithm is 2-3 times faster than by SIFT algorithm; in comparison with global nearest search, approximate nearest neighbor searching based on KD-Tree has Less calculation, so in this way, the proposed algorithm improves matching speed.

关键词

KD-Tree/SURF/图像匹配/特征提取/近似最近邻搜索

Key words

KD-Tree, SURF, image matching, feature extraction, approximate nearest neighbor searching

分类

信息技术与安全科学

引用本文复制引用

杜振鹏,李德华..基于KD-Tree搜索和SURF特征的图像匹配算法研究[J].计算机与数字工程,2012,40(2):96-98,126,4.

计算机与数字工程

1672-9722

访问量0
|
下载量0
段落导航相关论文