| 注册
首页|期刊导航|计算机与现代化|三种中文文本自动分类算法的比较和研究

三种中文文本自动分类算法的比较和研究

陈琳 王箭

计算机与现代化Issue(2):1-4,7,5.
计算机与现代化Issue(2):1-4,7,5.DOI:10.3969/j.issn.1006-2475.2012.02.001

三种中文文本自动分类算法的比较和研究

Comparison and Research on Algorithms of Three Chinese Text Classification

陈琳 1王箭1

作者信息

  • 1. 南京航空航天大学信息科学与技术学院,江苏南京 210016
  • 折叠

摘要

Abstract

With the development of Internet and information technology, network information scale is explosively increasing. Among various type of information, the type of texts occupy a considerable proportion. Therefore, efficient and rapid classification and processing of text information in the network become a key issue. The paper analyzes and compares SVM algorithm, Bayes algorithm and KNN algorithm. By the experiments of the three algorithms in Chinese text classification, the results indicate SVM algorithm is superior than KNN algorithm and Bayes algorithm, SVM algorithm is an excellent Chinese text classification algorithm.

关键词

中文文本分类/SVM/Bayes/KNN

Key words

Chinese text classification/SVM/Bayes/KNN

分类

天文与地球科学

引用本文复制引用

陈琳,王箭..三种中文文本自动分类算法的比较和研究[J].计算机与现代化,2012,(2):1-4,7,5.

基金项目

国家863计划资助项目(2009AA044601) (2009AA044601)

计算机与现代化

OACSTPCD

1006-2475

访问量0
|
下载量0
段落导航相关论文