| 注册
首页|期刊导航|计算机应用研究|基于频繁项集挖掘算法的改进与研究

基于频繁项集挖掘算法的改进与研究

刘步中

计算机应用研究2012,Vol.29Issue(2):475-477,3.
计算机应用研究2012,Vol.29Issue(2):475-477,3.DOI:10.3969/j.issn.1001-3695.2012.02.019

基于频繁项集挖掘算法的改进与研究

Improved apriori mining frequent items algorithm

刘步中1

作者信息

  • 1. 淮安信息职业技术学院电子工程学院,江苏淮安223003
  • 折叠

摘要

Abstract

Association rule mining is an important data mining areas of research contents, frequent itemset mining association rules mining is one of the key issues. According to the existing frequent itemset mining algorithm, based on the existing problems , this paper put forward the Apriori algorithm analysis system for Apriori-frequent itemset mining algorithm. The algorithm used overlap strategy to reduce scanning databases, thereby algorithm achieved higher efficiency. Experimental results show that the efficiency of algorithm is 1 ~ 4 times than Apriori system.

关键词

数据挖掘/关联规则/频繁项集挖掘算法

Key words

data mining/ association rules/ Inter-Apriori

分类

信息技术与安全科学

引用本文复制引用

刘步中..基于频繁项集挖掘算法的改进与研究[J].计算机应用研究,2012,29(2):475-477,3.

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量2
|
下载量0
段落导航相关论文