| 注册
首页|期刊导航|计算机应用研究|基于用户兴趣度和特征的优化协同过滤推荐

基于用户兴趣度和特征的优化协同过滤推荐

严冬梅 鲁城华

计算机应用研究2012,Vol.29Issue(2):497-500,4.
计算机应用研究2012,Vol.29Issue(2):497-500,4.DOI:10.3969/j.issn.1001-3695.2012.02.026

基于用户兴趣度和特征的优化协同过滤推荐

Optimized collaborative filtering recommendation based on users' interest degree and feature

严冬梅 1鲁城华1

作者信息

  • 1. 天津财经大学 理工学院信息科学与技术系,天津300222
  • 折叠

摘要

Abstract

Collaborative filtering technology is widely used in personalized recommendation system. In order to make the user' s nearest neighbors set more precise and effective, this paper presented an optimized collaborative filtering recommendation algorithm based on users' interest degree and feature. Firstly, it grouped users through calculating users' interest degree to items. Secondly, it got the value of the users' preferences for items when the users had different characteristics. Finally, it used a new method of calculating the similarity degree to calculate the target users' nearest neighbors set. The result shows that the algorithm enhances the effectiveness and accuracy of the nearest neighbors set, and the recommendation quality has significant improvement than traditional algorithm.

关键词

用户兴趣度/用户特征/贝叶斯算法/协同过滤/用户相似度

Key words

users ' interest degree/ users ' feature/ Bayesian algorithm/ collaborative filtering ( CF) / similarity between users

分类

信息技术与安全科学

引用本文复制引用

严冬梅,鲁城华..基于用户兴趣度和特征的优化协同过滤推荐[J].计算机应用研究,2012,29(2):497-500,4.

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文