| 注册
首页|期刊导航|计算机应用与软件|基于聚类分析的图模型文档分类

基于聚类分析的图模型文档分类

孟海东 刘小荣

计算机应用与软件2012,Vol.29Issue(1):171-174,229,5.
计算机应用与软件2012,Vol.29Issue(1):171-174,229,5.

基于聚类分析的图模型文档分类

DOCUMENT CATEGORISATION USING GRAPH MODEL BASED ON CLUSTERING ANALYSIS

孟海东 1刘小荣1

作者信息

  • 1. 内蒙古科技大学信息工程学院 内蒙古包头014010
  • 折叠

摘要

Abstract

Directing at the problem in traditional vector space model that the feature items are dealt with in isolation, in this paper the feature reduction is firstly done through the model of χ\2 statistics in combination with feature clustering, and then the graph model is used to establish correlative information between the words. At the end, KNN method is utilised for document classification test. The algorithm improves the contribution of rare words to the classification, enhances the classification performance of conjunctive words and reduces the number of dimensions in document vectors. Experiment indicates that the algorithm improves the accuracy and recall rates of classification.

关键词

聚类分析/图模型/文档分类

Key words

Clustering analysis/Graph model/Document categorisation

分类

信息技术与安全科学

引用本文复制引用

孟海东,刘小荣..基于聚类分析的图模型文档分类[J].计算机应用与软件,2012,29(1):171-174,229,5.

计算机应用与软件

OA北大核心CSCDCSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文