四川理工学院学报:自然科学版2011,Vol.24Issue(5):580-582,3.
求解一维对流扩散反应方程的一种隐式差分格式
An Implicit Scheme of the 1D Convection-Diffusion-Reaction Equation
摘要
Abstract
An implicit difference scheme is proposed for solving the one-dimensional(1D) unsteady convection-diffusion-reaction equation.By using an exponential function,the model equation can be rewritten in the form of the convection-diffusion equation.Firstly its difference scheme is constructed;then,using the back substitution process,the final implicit scheme is gotten.The truncation of the scheme is O(τ2+h2).It is proved to be unconditionally stable by Von Neumann method.Because only three points are used at each time level,the difference equation can be solved by the method of forward elimination and backward substitution.Numerical results indicates the efficiency of the algorithm.关键词
对流扩散反应方程/隐式差分格式/无条件稳定Key words
convection-diffusion-reaction equation/implicit difference scheme/unconditional stability分类
数理科学引用本文复制引用
魏剑英..求解一维对流扩散反应方程的一种隐式差分格式[J].四川理工学院学报:自然科学版,2011,24(5):580-582,3.基金项目
宁夏自然科学基金资助项目 ()