| 注册
首页|期刊导航|智能系统学报|谱图聚类算法研究进展

谱图聚类算法研究进展

李建元 周脚根 关佶红 周水庚

智能系统学报2011,Vol.6Issue(5):405-414,10.
智能系统学报2011,Vol.6Issue(5):405-414,10.DOI:10.3969/j.issn.1673-4785.2011.05.004

谱图聚类算法研究进展

A survey of clustering algorithms based on spectra of graphs

李建元 1周脚根 2关佶红 1周水庚3

作者信息

  • 1. 同济大学计算机科学与技术系,上海201804
  • 2. 上海市农业科学院数字农业与工程技术研究中心,上海201106
  • 3. 复旦大学上海市智能信息处理重点实验室,上海200433
  • 折叠

摘要

Abstract

Differential evolution algorithms have gradually become one of the most popular types of stochastic search algorithms in the area of evolutionary computation. They have been successfully applied to solve various problems in real-world applications. Since their performance often depends heavily on the parameter settings, the design of parameter control and adaptation strategies is one of the current hot topics of research in differential evolution. Although numerous parameter control schemes have been proposed, systematic overviews and analysis are still lacking. In this paper, first the basic principles and operations of the differential evolution algorithm were briefly introduced, and then a detailed overview was provided on different parameter control and adaptation strategies by dividing them into the following four classes: empirical parameter settings, randomized parameter adaptation strategies, randomized parameter adaptation strategies with statistical learning, and parameter self-adaptation strategies. The overview emphasized the latter two classes. To study the efficacy of these parameter control and adaptation strategies, experiments with the background of real-valued function optimization were conducted to compare their efficiency and practicability further. The results showed that the parameter self-adaptation is one of the most effective strategies so far.

关键词

谱图聚类/图割目标函数/谱宽松方法/相似图构建/半监督学习

Key words

evolutionary computation/ differential evolution/ parameter control/ adaptation strategies/ self-adaptation

分类

信息技术与安全科学

引用本文复制引用

李建元,周脚根,关佶红,周水庚..谱图聚类算法研究进展[J].智能系统学报,2011,6(5):405-414,10.

基金项目

国家自然科学基金资助项目(60873040). (60873040)

智能系统学报

OA北大核心CSTPCD

1673-4785

访问量0
|
下载量0
段落导航相关论文