| 注册
首页|期刊导航|信息与控制|适用于小子样时间序列预测的动态回归极端学习机

适用于小子样时间序列预测的动态回归极端学习机

张弦 王宏力

信息与控制2011,Vol.40Issue(5):704-709,6.
信息与控制2011,Vol.40Issue(5):704-709,6.DOI:10.3724/SP.J.1219.2011.00704

适用于小子样时间序列预测的动态回归极端学习机

Dynamic Regression Extreme Learning Machine and Its Application to Small-sample Time Series Prediction

张弦 1王宏力1

作者信息

  • 1. 第二炮兵工程学院自动控制工程系,陕西西安710025
  • 折叠

摘要

Abstract

To deal with the problem of small-sample modeling in equipment condition on-line monitoring, an on-line monitoring method based on dynamic regression extreme learning machine (DR-ELM) is proposed. Condition data of mechanical equipment are used to train a prediction model based on DR-ELM. In an iterative manner, the latest condition data are adopted and the oldest condition data are abandoned, to achieve the DR-ELM prediction model training on-line. Thus, the current condition of mechanical equipment can be effectively predicted by the method. Simulation on chaotic time series prediction and fan condition monitoring based on time series prediction indicate that the method has better performance in training computational cost and prediction accuracy in comparison with conventional condition monitoring methods based on extreme learning machine (ELM) and on-line sequential extreme learning machine (OS-ELM).

关键词

极端学习机/在线训练/小子样/时间序列预测/状态监测

Key words

extreme learning machine (ELM)/ on-line training/ small-sample/ time series prediction/ condition monitoring

分类

信息技术与安全科学

引用本文复制引用

张弦,王宏力..适用于小子样时间序列预测的动态回归极端学习机[J].信息与控制,2011,40(5):704-709,6.

信息与控制

OA北大核心CSCDCSTPCD

1002-0411

访问量0
|
下载量0
段落导航相关论文