| 注册
首页|期刊导航|运筹与管理|基于DEA和神经网络集成模型的我国基础设施投资有效性预测研究

基于DEA和神经网络集成模型的我国基础设施投资有效性预测研究

李玉龙 李忠富

运筹与管理Issue(6):88-98,11.
运筹与管理Issue(6):88-98,11.

基于DEA和神经网络集成模型的我国基础设施投资有效性预测研究

Combined DEA and Neural Network for Predicting Investment Validityof Infrastructure on China

李玉龙 1李忠富2

作者信息

  • 1. 中央财经大学 管理科学与工程学院,北京100081
  • 2. 哈尔滨工业大学 管理学院,黑龙江哈尔滨150001
  • 折叠

摘要

Abstract

Combined model of data envelopment analysis( DEA) and neural network for predicting investment validity of infrastructure on China is proposed in this paper. Firstly, investment efficiency on infrastructure based on DEA method from 1993 to 2007 is evaluated to obtain the basic data to predict investment validity. And then, according to the classifying samples which is established based on the evaluated results with DEA method, the scale validity and technical validity of infrastructure is separately predicted with the multi-layer perceptron neural network ( MLP-NN) . The results show that the prediction of investment validity on infrastructure is feasible, and the response rate and the recall have an obvious advantage by comparing with RBF neural network approach and C-SVM method and logistic regression. DEA-MLP-NN method is more effective.

关键词

工程管理/预测/数据包络分析/神经网络/基础设施投资

Key words

engineering management/ predicting/ DEA/ neural network/ infrastructure investment

分类

管理科学

引用本文复制引用

李玉龙,李忠富..基于DEA和神经网络集成模型的我国基础设施投资有效性预测研究[J].运筹与管理,2011,(6):88-98,11.

基金项目

国家自然科学基金资助项目(G0724003) (G0724003)

中财121人才工程青年博士发展基金资助项目(QBJGL201006) (QBJGL201006)

运筹与管理

OA北大核心CHSSCDCSCDCSTPCD

1007-3221

访问量0
|
下载量0
段落导航相关论文