| 注册
首页|期刊导航|应用数学|随机变量阵列加权和最大值的收敛性

随机变量阵列加权和最大值的收敛性

邱德华

应用数学2011,Vol.24Issue(2):407-413,7.
应用数学2011,Vol.24Issue(2):407-413,7.

随机变量阵列加权和最大值的收敛性

The Convergence for Weighted Sums of Arrays of Random Variables

邱德华1

作者信息

  • 1. 广东商学院数学与计算科学学院,广东广州510320
  • 折叠

摘要

Abstract

In this paper, we discuss the weak law of large numbers and Lr convergence of maxun≤j≤vn∣∑_I~j=un αni Xni∣,where,0<r≤p,0<p≤2,{αni,un≤I≤un,n≥1} is a real constants arrays and {Xni , un≤ I ≤ un, n ≥ 1} is an arrays of arbitrary random variables when 0 < p < 1 and {Xni , un≤ I ≤ vn, n ≥ 1} is an arrays of zero-mean rowwise NA random variables when l≤p≤2. The results in series of previous papers are enriched and extended.

关键词

行为NA的随机变量阵列/加权和/弱大数律/Lr收敛

Key words

Arrays of rowwise NA random variables/Weighted sums/Weak law of large numbers/Lr convergence

分类

数理科学

引用本文复制引用

邱德华..随机变量阵列加权和最大值的收敛性[J].应用数学,2011,24(2):407-413,7.

应用数学

OA北大核心CSCDCSTPCD

1001-9847

访问量0
|
下载量0
段落导航相关论文