| 注册
首页|期刊导航|自动化学报|一种有效的储备池在线稀疏学习算法

一种有效的储备池在线稀疏学习算法

韩敏 王新迎

自动化学报2011,Vol.37Issue(12):1536-1540,5.
自动化学报2011,Vol.37Issue(12):1536-1540,5.DOI:10.3724/SP.J.1004.2011.01536

一种有效的储备池在线稀疏学习算法

An Effective Online Sparse Learning Algorithm for Echo State Networks

韩敏 1王新迎1

作者信息

  • 1. 大连理工大学电子信息与电气工程学部 大连 116023
  • 折叠

摘要

Abstract

In order to overcome the lack of effective online learning method for echo state networks and to solve the ill-posed problem of reservoir, an effective online sparse learning algorithm is proposed for echo state networks in this paper. An Li regularization constraint is added to the objective function of reservoir, and a truncated gradient algorithm is used to approximately solve the problem online. The proposed method can adjust the output weights of reservoir online, control the spar-sity of the output weights, and ensure the generalization performance. Theoretical analysis and simulation results demonstrate the effectiveness of the algorithm.

关键词

递归网络/回声状态网络/稀疏/在线/优化

Key words

Recurrent neural networks, echo state networks (ESNs)/sparse/online/optimization

引用本文复制引用

韩敏,王新迎..一种有效的储备池在线稀疏学习算法[J].自动化学报,2011,37(12):1536-1540,5.

基金项目

国家自然科学基金(61074096)资助 (61074096)

自动化学报

OA北大核心CSCDCSTPCD

0254-4156

访问量0
|
下载量0
段落导航相关论文