| 注册
首页|期刊导航|中国电机工程学报|基于PSO-BP神经网络的水焦浆管道压降预测

基于PSO-BP神经网络的水焦浆管道压降预测

马修元 段钰锋 刘猛 李华锋

中国电机工程学报2012,Vol.32Issue(5):54-60,7.
中国电机工程学报2012,Vol.32Issue(5):54-60,7.

基于PSO-BP神经网络的水焦浆管道压降预测

Prediction of Pressure Drop of Coke Water Slurry Flowing in Pipeline by PSO-BP Neural Network

马修元 1段钰锋 1刘猛 1李华锋1

作者信息

  • 1. 东南大学能源与环境学院,江苏省南京市210096
  • 折叠

摘要

Abstract

Experimental researches were carried out on a small-scale slurry transportation system to investigate resistance properties of coke water slurry flowing in pipes with four different diameters.There exists wall slip behavior when coke water slurry flows in the pipes,which could cause drag reduction.Therefore,it is necessary to correct wall slip behavior to predict pressure drop of coke water slurry.An artificial neural networks improved by PSO(particle swarm optimization) with five parameters in input layer was constructed to predict the pressure drop of coke water slurry flowing in the pipeline.Then pressure drop was predicted by artificial neural network and results were compared with the experimental value.The results show that PSO-BP artificial neural network has a good ability in predicting the pressure drop of coke water slurry flowing in the pipe.The error between the predicted value and experimental value is small and the largest error is no more than 10%.

关键词

水焦浆/压降/壁面滑移/神经网络/粒子群优化算法

Key words

coke water slurry/pressure drop/wall slip/artificial neural network/particle swarm optimization(PSO)

分类

能源科技

引用本文复制引用

马修元,段钰锋,刘猛,李华锋..基于PSO-BP神经网络的水焦浆管道压降预测[J].中国电机工程学报,2012,32(5):54-60,7.

基金项目

国家重点基础研究发展计划项目(973项目)(2010CB227001) (973项目)

国家重点实验室开放基金资助(ZJUCEU2010002)~~ (ZJUCEU2010002)

中国电机工程学报

OA北大核心CSCDCSTPCD

0258-8013

访问量0
|
下载量0
段落导航相关论文